Φ-Admissible Sublinear Singular Operators and Generalized Orlicz-Morrey Spaces
نویسندگان
چکیده
منابع مشابه
Some Multi-sublinear Operators on Generalized Morrey Spaces with Non-doubling Measures
In this paper the boundedness for a large class of multisublinear operators is established on product generalized Morrey spaces with non-doubling measures. As special cases, the corresponding results for multilinear Calderón-Zygmund operators, multilinear fractional integrals and multi-sublinear maximal operators will be obtained.
متن کاملGeneralized Fractional Integral Operators on Vanishing Generalized Local Morrey Spaces
In this paper, we prove the Spanne-Guliyev type boundedness of the generalized fractional integral operator Iρ from the vanishing generalized local Morrey spaces V LM {x0} p,φ1 to V LM {x0} q,φ2 , 1 < p < q < ∞, and from the space V LM {x0} 1,φ1 to the weak space VWLM {x0} q,φ2 , 1 < q < ∞. We also prove the Adams-Guliyev type boundedness of the operator Iρ from the vanishing generalized Morrey...
متن کاملWeighted Hardy and singular operators in Morrey spaces
We study the weighted boundedness of the Cauchy singular integral operator SΓ in Morrey spaces L(Γ) on curves satisfying the arc-chord condition, for a class of ”radial type” almost monotonic weights. The non-weighted boundedness is shown to hold on an arbitrary Carleson curve. We show that the weighted boundedness is reduced to the boundedness of weighted Hardy operators in Morrey spaces L(0, ...
متن کاملBoundedness of the Maximal, Potential and Singular Operators in the Generalized Morrey Spaces
We consider generalized Morrey spaces Mp,ω R with a general function ω x, r defining the Morrey-type norm. We find the conditions on the pair ω1, ω2 which ensures the boundedness of the maximal operator and Calderón-Zygmund singular integral operators from one generalized Morrey space Mp,ω1 R to another Mp,ω2 R , 1 < p < ∞, and from the space M1,ω1 R to the weak space WM1,ω2 R . We also prove a...
متن کاملSingular Integrals and Commutators in Generalized Morrey Spaces
The purpose of this paper is to study singular integrals whose kernels k(x; ξ) are variable, i.e. they depend on some parameter x ∈ R and in ξ ∈ R \ {0} satisfy mixed homogeneity condition of the form k(x;μξ1, . . . , μ ξn) = μ − ∑ n i=1 ik(x; ξ) with positive real numbers αi ≥ 1 and μ > 0. The continuity of these operators in L(R) is well studied by Fabes and Rivière. Our goal is to extend the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Function Spaces
سال: 2014
ISSN: 2314-8896,2314-8888
DOI: 10.1155/2014/505237